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ON STABILITY WHEN A SINGULAR POINT IS NON-ISOLATED* 

ZH. A. MAMIROV 

Assuming that m zero roots correspond to the non-isolated singular point 

of the equations of disturbed motion, the problem of stability when some 

of the remaining roots are pure imaginary, while others have a negative 

real part in inessentially singular cases, is considered. This situation 

is typical for non-holonomic systems. The stability and instability 

theorems obtained are used to study the stability of the rotations of a 

Celtic stone on the boundary of the domain of stability. 

1. Let the system of equations of the disturbed motion with holomorphic right-hand sides 

and explicitly isolated linear approximation be 

2' = x (5, Y), y' = Ay + y (r, Y) (1.1) 

where x is an m-vector, y is an (N- m)-vector, and A is a constant (N- m) x(N - m) 

matrix. We assume that 

x (I, 0) = Y (5, 0) = 0 (1.2) 
for all x in the neighbourhood of the point x = 0. The singular point t = 0,~ = 0 of system 

(1.1) is then non-isolated: by (1.21, Eqs.tl.1) admit of the manifold of equilibrium states 

5=c, y=o (c=(cl,...,cm), cl,=const, k=l,...,n) 

Under conditions (1.21, we can regard (1.1) as the equations of the disturbed motion of 

a non-holonomic system with m non-holonomic constraints /l, 2/. It was proposed in /3/ to 
regard as critical cases only those when the number of zero roots of the characteristicequation 

is greater than the number of equations of the non-holonomic constraints, while in /4/ it was 

proposed to call these cases singular. 

Definition. We have the K-singular case if conditions (1.2) hold for Eqs.tl.1) and at 

least one eigenvalue of the matrix A has a zero real part. 

2. We consider the K-singular case when the matrix A in Eqs.(l.l) has n pairs ofdistinct 

pure imaginary roots and g roots with negative real parts (N = m + 2n + q). We rewrite Eqs. 
(1.1) as 

(2.1) 

Here, f and z are real m- and q-vectors, q, ?j are conjugate complex n-vectors, SD, m, 

are complex vector functions, conjugate respectively to m0 and a,,, A is a matrix of pure 

imaginary eigenvalues, and the constant (q X q) matrix P has eigenvalues with negative real 

parts; the functions with unit subscript are zero when z = 0. The arguments of functions with 

zero subscript are 5, T) and F, and with unit subscript, are E, ?l, ?j and s. 

In the inessentially singular case we have none of the identities F,=cP,=*,=Z,,~O 

/5/. We write the functions with zero subscript as the sum of two terms: 

F, = F&l) (f) + F,“) (E, q, 3, F,(‘) (5, 0, 0) = 0;. . - 

(we write similar equations for @,,iii',,Z,). 
We rewrite conditions (1.2) as 

F,c', = Q,(r) = t&(r) = &Jr) am 0 ‘(2.2) 

We can always arrange for the functions F,@’ and F, here to contain no terms that are 
linear in q,q and z /6/. In the inessentially singular case, the stability problem for the 
zero solution of system (2.1) can be reduced to the stability problem /5, 6/ for the zero 
solution of the system (we retain the previous notation) 

E' = F,, r,' = Aq + 0,, ?i' = -Ati + s0 ,(2.3) 

in the critical case of m zero roots in m groups of solutions and n pairs of pure imaginary 
roots, if the stability problem is solved for terms of finite order in the variables 6, '1, Ti, 
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and we have the identities F&n = (D&n = Tfig) E 0 for system (2.3). 
We reduce system (2.31 to the normal form /7, S/ up to and including terms of the M-th 

order. The K-singularity is then preserved, Hence, using the previous notation, we obtain 

42.4) 

Here, sk8 and A,,, A,, 
@s(1), ifJO 

are respectively real and complex conjugate coefficients: F&I), 
are respectively real and complex conjugate resonance /7, 8/ forms 

dependent on $, Q, 5; FE, #,, G:, 
of order 1, 

is a set of orders of smallness which are higher than M and 
depend on 5, 3, 5. Throughout, k= t,.. -, m; s = $9. - -, a. 

After the change of variabl.es 

system f2.4) takes the form /7, 8/ 

b *a = IleAve, c,,=ImA,,, P=(P~,...,&), fl=(%..*,f’n) 

Here, .@#)+ p&l', Q&O are the respective resonanance forms of system (2.41 of order I 
in g,p with coefficients, periodic in t3: the functions RN, P, and 0. axe forms in 
which are periodic in t and 8, and have an order higher than M. 

6, P, 

We shall assume that m =2 (the generalization to the case 'n>2 is obvious). We 
transform in system (2.5) to (n$-2)-dimensional spherical coordinates rr 'pl, * * *f (PIE+1 

&, =rcosR, &=rcoscp,sincp, 
v-L1 m4.f 

and write the corresponding equations only for i and Taco taking M 1.2 

r* = A* II?(~) (cp, 6) + R (r, cp, 8, t)l 

vr’ = A sin a M”) (cp, 0) -I- G (r, cp, 8, f)t 

A = r sin w sin cpz, .lV”) (cp, El) = K (cp’, 8)Ar-’ + 

+$ I(% -i- 4,) m vr -f- (a,, f baa) cos vs sin a;1 p,W* 

G(O) (cp, 0) = ~0s CPI K (cp’, Wr-’ + .& (cp) 

al, sin* ~1 pssA-‘, K (cp’, t3) = 5 KP’ (cp’, 0) p d A-’ 
8-4 

(2.W 

(since the least order of inner resonances in this case is three, the functions 
are independent of g). 

p,c* ce, PI @I 

We write Aa and A sin 9% on the right-hand sides of Eqs.12.6) as common factors for the 
entire right-hand side of these equations, inasmuch as we have the K-singular case and there 
are no terms linear in q, 5, 2 in the equations for F in system fZ.l). The functions P,‘A-~ 
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can be written as 

Thus these functions do not vanish simultaneously for any possible values of 'PSV (PP? . . ‘? 
%+1. 

Theorem 1. Assume that 1) for all s the coefficients b,, are of the same sign and that 

we have the inequalities (uzs + b,Ja + 4aIsbls < 0; 2) min, I L ($41 > maw, e I K (4, WZI. 
Then, the zero solution of system (2.1) is Lyapunov-stable. 

Proof. Under condition 1) (condition 2)) the functions L(cp)(G@J(cp,8)) become of fixed 

sign. We consider the function V = r OX&(-hcoscp,), where h is a real number. We calculate 

the derivative with respect to t of this function, using the system of equations of the dis- 

turbed motion (2.6) 

v' = VA+-' @G(O) (cp, e) + R(O) (cp, e) + kG (r, cp, 8, t) + R (r, cp, 8, t)) 

For sufficiently small r, we can choose h in such a way that the derivative V is of 

fixed sign, while Vv’<O; in this case, V satisfies all the conditions of Rumyantsev's 

theorem /9/ on stability with respect to some of the variables. 

Note that V is chosen in the same way in /lo/. 

Notes. lo. If the coefficients b,, are of the same sign of all s, and we have (% + 
bl,)*+ 4a,,b,,<O, then,underthe corresponding condition 2) of Theorem 1, the zero solution of 

system (2.1) is likewise Lyapunov-stable. 

20. If m=l (i.e., there is no zero root), II >- 1, and there are no inner resonances 

(in this case K(o',8)=0), then Theorem 1 is the same as the theorem of /lo/ (it suffices to 

put (INS = bzs = 0 in the conditions of Theorem 1). 

3O. In the case m>2,n>Ir and there are no inner resonances, we 

in the light of Note lo as follows. 

can rewrite Theorem 1 

Theorem 2. If there exists for all s at least one k such that all the bks are of the 

same sign, and we have the inequalities (we can put k=l without loss of generality) 

,>L 

x (%a+ bv#+4a b < 0 
v=2 1s IS (2.7) 

then the zero solution of system (2.1) is Lyapunov-stable. 
In the case when there are inner resonances, the sufficient condition for the zero sol- 

ution of system (2.1) to be stable is that both inequality (2.7) and an inequality similar to 

2) of Theorem 1 hold. 

3. When studying the stability of the rotations of a Celtic stones /ll/, the case m =I, 
n=2 (system (3.10)) was considered, though the coefficients b,, have different signs. 

Consequently, the stability theorems, whether there are no inner resonances /lo/ or there are 

(Theorem 1, Note lo), are not applicable for the case taken in /ll/, though the K-singularity 

remains. 

Assuming that K-singularity is present, we consider the case when m = I, n>2, though 

the coefficients b,, are not all of the same sign, and there are not inner resonances. We 

rewrite system (2.5), indicating explicitly the form of the cubic terms and putting M = n + 1 
(the equations for 8,' are omitted): 

where the forms H.(l), P,(l) of order 1 are not in general the same as in (2.5). 

Theorem 3. In the K-singular case with m = i, n-2 2, when there are not inner resonances, 
suppose we have for all s the inequalities: 
v = 1, . . ., n; 4) a,, - adWbIs -=z 0. 

1)&',,<% 2) b,, + b,, # 0, v = 1, . . ., n; 3) p8,< 0, 

Then, the zero solution of system (3.1) is Lyapunov-stable. 

Proof. Let us explain the structure of the leading non-linear terms. Since we have K- 
singularity, and as noted above, the functions PO('), F, contain no terms linear in q, fi, 2 
in system (2.1), the functions H, and P, can be written as 
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(3.2) 

where Hvl@), . . ., H$, Pg], . . ., Pz" are functions periodic in 0 and t, and their order of 

smallness with respect to $ and p is not less than the corresponding superscripts. 
Since the normalization /7, 8/ in system (3.1) is carried 

of the (n i-I)-th order, we can write all the forms P,(I) as 

where Da1 are real constants, and &V-9) are forms of order 
We consider the function 

out up to and including terms 

(3.3) 

0 - 2) in the variables &,P. 

where K,, are real constants. By condition 1) of the theorem, given any fixed K, and 
sufficiently small 6, and p, the function V is positive definite. 

Using system (3.1) and the structure of relations (3.2), the derivative r is 

Mere, the dots denote terms of higher order of smallness than those written. 
For the derivative r to be of fixed sign (such that Vv’,<O), the sufficient conditions 

are 

A) a,, - a,, # + 2K,,b,,<O for all s; 
IS 

B) V.(P)=[% i 
v,i=l 

K+VPJ + 2 BY6 (- 2) PV'] 
v-1 

are negative definite functions of P for all .s; 

C) K., (br, + br,)< 0 for all v = 1, . . ., n and s (v PSI 

we put all the K,, = 0, and choose the K, such that conditions c) are satisfied and 
are so small that, for all .s, the functions V.(p) are negative definite (this is possible by 
virtue of conditions l), 2), 3) of the theorem). Conditions A) then hold by virtue of con- 
dition 4). Hence V is a Lyapunov function, where VV’<O. 

Note. Theorem 3 can be strengthened if the necessary and sufficient conditions /12/ for 
fixed sign in a cone are applied to functions V8 (P) ; but we refrain from doing this because 
of the unwieldy working involved. 

4. Consider the instability. It was shown in /13/ that, if there are no inner resonances 
of the third order, and there exists, with m = i, at least one pair of numbers al,, b 1.9 
satisfying the inequality aIsblr>O, thenthe zero solution of system (2.5) is unstable. This 
assertion obviously remains true in the K-singular case for any n>l. 
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Theorem 4. Let m=z, let there be no third-order inner resonances, and let us have 
K-singularity for n>l. Then, if we have at least one of the inequalities 

alsbls + &zs > 0 (4.1) 

the zero solution of system (2.5) is unstable. 

Proof. Assume for clarity that (4.1) holds with s = 1. Using the usual arguments (see 

e.g., /8/), we can discard the equation for ~~0,' in system (2.5) and consider the truncated 

system /8/ 

L’= @,s%, -t b,.s%,) PS 

In the same way as in Kamenkov's instability theorem /6/, we form the following functions 

by noting the form of the right-hand sides of system (4.2) (it can be assumed without loss of 

generality that ~a~,# 0): 

(4.3) 

R = 2 ps2 [(a,, + 4,) EI -t (am + b,,) 3 
,=1 

Notice that, when %r # 0, expressions Ez = azI&lall, pI2 = @,,b,, + az~bzdSJ~J*~ pv = 0 (Y = 
2 7 . . ., n) are non-trivial solutions of the system of algebraic equations 

T, = 0, T, = 0 (s = 1, . . ., n) 
while the function R on this solution takes the form R = p12 (a,,b,, + a,,bzl)~l/aII. Consequently, 
if we assume that &la,, > 0, all the conditions of Kamenkov's instability theorem /6/ are 

formally satisfied: all the ps are of the same sign, i.e., they cannot be arbitrary, as is 

implicitly assumed in this theorem. We therefore pass to new variables ~l.~2,~.r given by 
the relations 

WI = Ella,,, wz = %z - azr~i, ur = p1 - (arib,, i- s,,b,,)"=r~ 

UY = p" - wz (v = 2, . . ., n) 

This change of variables obviously does not alter the stability problem. We rewrite 

system (4.2) in the new variables and, for the new system, form functions similar to (4.3), 

and thus arrange for all the conditions of Kamenkov's instability theorem to be satisfied, 

which can be done simply by taking w1 = %Ja,r > 0. Hence our theorem follows. 

We will now state a trivial extension of Theorem 4. 

Theorem 5. Let m> 2, let there be no third-order inner resonances, and let us have 

K-singularity for n> 1. Then, if at least one of the conditions 

j&kabk.> o 

holds, the zero solution of system (2.5) is unstable. 

5. In the model of a Celtic stone /14/ it is assumed that the principalradiiofcurvature 

r1 and rl are different. Retaining the notation of /14/, we consider the case when rl= rz 

and we have the inequalities 

A0 z D' - dd, + 0, A0 G 20~ + [a* (dd, - aa,) + 6 (d + d&b-’ > 
o, ~~ G 04 + 169 (dd, - aal) - 6 (6 + aa (a + al))lAo-' > 0, 

A,,2-4B~>0 

The matrix of the linear approximation of the equations of disturbed motion (rotation of 

the Celtic stone about a vertical axis on an absolutely rough plane) then has two zeros, and 
a pair of pure imaginary distinct, eigenvalues +rox,, fi-, where 

x1, p = ((A, + (A,*- 4B,)"z)/2'#z 

and we have K-singularity. Up to and including quadratic terms, the equations of disturbed 
motion are 

p' = A,,p - A,*q + Al,y, -A,,?, + (A,,/‘J’)P~& - (A,,/%& + . .> 
4’ = A,,P - A,,q + A,,v, - A,,?, + (A,,/@PSI - (A,,/+% + 

y,’ = -_4 + my2 - qB1 + BIYP, Yz’ = P - WI + PBZ - BlYl 
&’ = (D/C)p2 + ((A - B)lC)pq - (D/W + A,,Gpy, + (E/C + 

A,,G)py,- (E/C+ A,,G)~~,-AA,,G~~,+A,,G~,‘+ (A,,-AI&YIYz- 
A&y,” + ., 02’ = m - PYZ 

(5.1) 
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A,, = Do (a + d)A,-l, A,, = 0 (D' + ad,)A,-' 

A,, = o(D* + ald)A,-r, A,, = D8Ao-', A,, = @A,-= 

A,, = d8A,-‘, E = Mr,o (h - rl), G = Mhr,/C. 

The remaining notation is the same as in /14/. 
After the change of variables z,=p+ tq,r -I = P - i% 22 = 7% -!- iy,, T, = y1 - ip and subsequent 

normalization /8/, Eqs.(5.1) become 

&' = a,,p,l + a,,p*s + . . ., 02. = 0 + . . 
PI’ = b,,B,p, + . . ., PZ' = b&&p2 + . . . 

where the dots denote small third-order terms in BI, Bz. PI. it (the 
variables are omitted), while the coefficients of this system are 

ala = '/,ee (1 - x,*)12D (K, + K,) + i (A - B)(KS - X,)] + 
mk’hr, [bar, + 6,KJ + Mhr, Id& + &,K,],. .Q = i, 2 

_ _ 

equations for the angular 
given by 

b,, = o-'S-'[4~~(0 Im(K,R,) - Re(K,K&,))-+ 2x,(1 -x,. 
(1 + x,F&)Re U@,) + 2% Re (b& (i f %A - bK&‘,~, (1 - xl))] 

b,, = wlS-’ [4x1x, (61 Im (K,&) - Re (&K&J) - 2x, (i + x1 - 
(1 --x,)K,R,)Re(b,K,)+Zx, Ra (- F,R, (I -xx,) + b,K,&&(i + x2))] 

K,- - 
6om (1-c XI) + do 

Ks- _ 
600 (1 - %a) + &I 

(a& iox1) 0 (1 -x1) f co ’ (a0 + ioxd 0 (I+ ti) + co 
.S = (1 + K I? K R )(x1 + x# - (x, - x~)*(K,K~ + K,K,) - 1 1 2 * 

4%X, (K,& + R,K,), 40 = i (Aa + Al&, CO = i (A,, + A,,)/2 
bo = A,, i- i (A,, -A&2, d, = A,, + i (A,, - A,,)/2 

Notice that, when o is replaced by --OS the coefficients a,,, nl*, b,, and b,, remain un- 
changed. Applying Theorem 1, we see that, with allbll < 0, n&n < 0, bnb,, > 0, the zero solution 
of system (5.1) is stable, while it is unstable if we have one or both of the inequalities 

a,,b,, > 0, a,&,, > 0 (Theorem 4). 

The author thanks A.L. Kunitsyn, V.V. Rumyantsev, and the editor, for useful discussions 
and criticism. 
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